Пояснительная записка

Рабочая программа основного общего образования по алгебре составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам освоения основной общеобразовательной программы основного общего образования, представленных в Федеральном государственном образовательном стандарте общего образования. В ней также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.

Данная рабочая программа разработана в соответствии со следующими нормативными документами:

- 1. Федеральный государственный общеобразовательный стандарт основного общего образования. Министерство образования и науки Российской Федерации. М. Просвещение. 2011 48с (Стандарты второго поколения)
- 2. Примерная основная образовательная программа образовательного учреждения. Основная школа. Серия: «Стандарты второго поколения. М.: Просвещение, 2011 г. 352с.
- 3. Примерные программы по учебным предметам. Математика 5-9 классы 3-е издание, переработанное М. Просвещение. 2011 64с. (Стандарты второго поколения).
- 4. Авторская рабочая программа. Алгебра 7 9 классы. Составитель: Н.Г Миндюк М «Просвещение», 2014г. 31 с.

Используется УМК: учебник Алгебра: Учеб. для 7, 8, 9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение, 2015, Т.М. Ерина Рабочая тетрадь по алгебре к учебнику Ю. Н, Макарычева. М.: Экзамен, 2015г ч1, ч.2.

Сознательное овладение учащимися системой алгебраических знаний и умений необходимо в повседневной жизни для изучения смежных дисциплин и продолжения образования.

Практическая значимость школьного курса алгебры обусловлена тем, что её объектом являются количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Алгебра является одним из опорных предметов основной школы: она обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественнонаучного цикла, в частности к физике. Развитие логического мышления учащихся при обучении алгебре способствует усвоению предметов гуманитарного цикла. Практические умения и навыки алгебраического характера необходимы для трудовой и профессиональной подготовки школьников.

Развитие у учащихся правильных представлений о сущности и происхождении алгебраических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте алгебры в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся и качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности развитого воображения, алгебра развивает нравственные черты личности (настойчивость, целеустремленность, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

Изучение алгебры, функций, вероятности и статистики существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

Изучение алгебры позволяет формировать умения и навыки умственного труда — планирование своей работы, поиск рациональных путей её выполнения, критическая оценка результатов. В процессе изучения алгебры школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса алгебры является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в алгебре правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно раскрывают механизм логических построений и учат их применению. Тем самым алгебра занимает одно из ведущих мест в формировании научно-теоретического мышления школьников. Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, алгебра вносит значительный вклад в эстетическое воспитание учащихся.

Общая характеристика курса алгебры в 7 - 9 классах.

В курсе алгебры можно выделить следующие основные содержательные линии: арифметика; алгебра; функции; вероятность и статистика. Наряду с этим в содержание включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные содержательные линии. При этом первая линия — «Логика и множества» — служит цели овладения учащимися некоторыми элементами универсального математического языка, вторая — «Математика в историческом развитии» — способствует созданию общекультурного, гуманитарного фона изучения курса.

Содержание линии «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе.

Содержание линии «Алгебра» способствует формированию у учащихся математического аппарата для решения задач из разделов математики, смежных предметов и окружающей реальности. Язык алгебры подчёркивает значение математики как языка для построения математических моделей процессов и явлений реального мира.

Развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, и овладение навыками дедуктивных рассуждений также являются задачами изучения алгебры. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности — умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления. Целью изучения курса алгебры в 7-9 классах является:

- сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
- овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
- изучить свойства и графики элементарных функций, научиться использовать функциональнографические представления для описания и анализа реальных зависимостей;
- развить логическое мышление и речь умения логически обосновывать суждения, проводить

несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

• сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

В основе обучения математики лежит овладение учащимися следующими видами компетенций: предметной, коммуникативной, организационной и общекультурной. В соответствии с этими видами компетенций выделены основные содержательно-целевые направления (линии) развития учащихся средствами предмета математика.

Предметная компетенция. Здесь под предметной компетенцией понимается осведомленность школьников о системе основных математических представлений и овладение ими основными предметными умениями. Формируются следующие образующие эту компетенцию представления: о математическом языке как средстве выражения математических законов, закономерностей и т.д.; о математическом моделировании как одном из важных методов познания мира. Формируются следующие образующие эту компетенцию умения: создавать простейшие математические модели, работать с ними и интерпретировать полученные результаты; приобретать и систематизировать знания о способах решения математических задач, а также применять эти знания и умения для решения многих жизненных задач.

Коммуникативная компетенция. Здесь под коммуникативной компетенцией понимается сформированность умения ясно и четко излагать свои мысли, строить аргументированные рассуждения, вести диалог, воспринимая точку зрения собеседника и в то же время подвергая ее критическому анализу. Формируются следующие образующие эту компетенцию умения: извлекать информацию из разного рода источников, преобразовывая ее при необходимости в другие формы (тексты, таблицы, схемы и т.д.).

Организационная компетенция. Здесь под организационной компетенцией понимается сформированность умения самостоятельно находить и присваивать необходимые учащимся новые знания. Формируются следующие образующие эту компетенцию умения: самостоятельно ставить учебную задачу (цель), разбивать ее на составные части, на которых будет основываться процесс ее решения, анализировать результат действия, выявлять допущенные ошибки и неточности, исправлять их и представлять полученный результат в форме, легко доступной для восприятия других людей.

Общекультурная компетенция. Здесь под общекультурной компетенцией понимается осведомленность школьников о математике как элементе общечеловеческой культуры, ее месте в системе других наук, а также ее роли в развитии представлений человечества о целостной картине мира. Формируются следующие образующие эту компетенцию представления: об уровне развития математики на разных исторических этапах; о высокой практической значимости математики с точки зрения создания и развития материальной культуры человечества, а также о важной роли математики с точки зрения формировании таких значимых черт личности, как независимость и критичность мышления, воля и настойчивость в достижении цели и др.

В рамках указанных линий решаются следующие задачи:

- ✓ овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- ✓ формирование интеллекта, а также личностных качеств, необходимых человеку для полноценной жизни, развиваемых математикой: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- ✓ формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- ✓ воспитание отношения к математике как к части общечеловеческой культуры, формирование понимания значимости математики для научно-технического прогресса.

Место предмета в федеральном базисном учебном плане

В учебном плане на изучение алгебры в 7-9 классах основной школы отводится 3 часа в неделю в течение каждого года обучения, что составляет 102 часа в год. Итого: 306 часов.

Личностные, метапредметные и предметные результаты освоения содержания курса

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

личностные:

- сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;
- сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- креативность мышления, инициатива, находчивость, активность при решении алгебраических залач:
- умение контролировать процесс и результат учебной математической деятельности;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

метапредметные:

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

- самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;
- выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;
- составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
- работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);
- планировать свою индивидуальную образовательную траекторию;
- свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;
- в ходе представления проекта давать оценку его результатам;
- самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
- уметь оценить степень успешности своей индивидуальной образовательной деятельности;

Средством формирования регулятивных УУД служат технология системно-деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

Познавательные УУД:

- анализировать, сравнивать, классифицировать и обобщать факты и явления;
- осуществлять сравнение, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

- строить логически обоснованное рассуждение, включающее установление причинноследственных связей;
- создавать математические модели;
- составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);
- вычитывать все уровни текстовой информации.
- уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.
- понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты (гипотезы, аксиомы, теории). Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.
- уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника и рабочей тетради.

- использование математических знаний для решения различных математических задач и оценки полученных результатов.
- совокупность умений по использованию доказательной математической речи.
- совокупность умений по работе с информацией, в том числе и с различными математическими текстами.
- умения использовать математические средства для изучения и описания реальных процессов и явлений.
- независимость и критичность мышления.
- воля и настойчивость в достижении цели.

Коммуникативные УУД:

- самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
- отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
- в дискуссии уметь выдвинуть контраргументы;
- учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
- понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

Средством формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование на уроках технологии личностно-ориентированного и системно- деятельностного обучения.

предметные:

- умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию, доказывать математические утверждения;
- владение базовым понятийным аппаратом: иметь представление о числе, владение символьным языком алгебры, знание элементарных функциональных зависимостей, формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- умение выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
- умение пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщения частных случаев и эксперимента;
- умение решать линейные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования

уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;

- овладение системой функциональных понятий, функциональным языком и символикой, умение строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа математических задач и реальных зависимостей;
- овладение основными способами представления и анализа статистических данных;
- умение применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов.

Содержание курса

1. Выражения. (22 ч)

Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики.

Основная цель - систематизировать и обобщить сведения о преобразованиях алгебраических выражений и решении уравнений с одной переменной.

Первая тема курса 7 класса является связующим звеном между курсом математики 5—6 классов и курсом алгебры. В ней закрепляются вычислительные навыки, систематизируются и обобщаются сведения о преобразованиях выражений и решении уравнений.

Нахождение значений числовых и буквенных выражений дает возможность повторить с учащимися правила действий с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры. Следует выяснить, насколько прочно овладели ими учащиеся, и в случае необходимости организовать повторение с целью ликвидации выявленных пробелов. Развитию навыков вычислений должно уделяться серьезное внимание и в дальнейшем при изучении других тем курса алгебры.

В связи с рассмотрением вопроса о сравнении значений выражений расширяются сведения о неравенствах: вводятся знаки \geq и \leq дается понятие о двойных неравенствах.

При рассмотрении преобразований выражений формально-оперативные умения остаются на том, же уровне, учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественное преобразование выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчеркивается, что основу тождественных преобразований составляют свойства действий над числами.

Усиливается роль теоретических сведений при рассмотрении уравнений. С целью обеспечения осознанного восприятия учащимися алгоритмов решения уравнений вводится вспомогательное понятие равносильности уравнений, формулируются и разъясняются на конкретных примерах свойства равносильности. Дается понятие линейного уравнения и исследуется вопрос о числе его корней. В системе упражнений особое внимание уделяется решению уравнений вида ах = b при различных значениях а и b. Продолжается работа по формированию у учащихся умения использовать аппарат уравнений как средство для решения текстовых задач. Уровень сложности задач здесь остается таким же, как в 6 классе.

Изучение темы завершается ознакомлением учащихся с простейшими статистическими характеристиками: средним арифметическими, модой, медианой, размахом. Учащиеся должны уметь использовать эти характеристики для анализа ряда данных в несложных ситуациях.

2. Функции (11 ч)

Функция, область определения функции, Способы задания функции. График функции Функция y=kx+b и её график. Функция y=kx и её график.

Основная цель - ознакомить учащихся с важнейшими функциональными понятиями и с графиками прямой пропорциональности и линейной функции общего вида.

Данная тема является начальным этапом в систематической функциональной подготовке учащихся. Здесь вводятся такие понятия, как функция, аргумент, область определения функции, график функции. Функция трактуется как зависимость одной переменной от другой. Учащиеся получают первое представление о способах задания функции. В данной теме начинается работа по формированию у учащихся умений находить по формуле значение функции по известному

значению аргумента, выполнять ту же задачу по графику и решать по графику обратную задачу.

Функциональные понятия получают свою конкретизацию при изучении линейной функции и ее частного вида — прямой пропорциональности. Умения строить и читать графики этих функций широко используются как в самом курсе алгебры, так и в курсах геометрии и физики. Учащиеся должны понимать, как влияет знак коэффициента на расположение в координатной плоскости графика функции y = kx, где $k \neq 0$, как зависит от значений k и b взаимное расположение графиков двух функций вида y = kx + b

Формирование всех функциональных понятий и выработка соответствующих навыков, а также изучение конкретных функций сопровождаются рассмотрением примеров реальных зависимостей между величинами, что способствует усилению прикладной направленности курса алгебры.

3. Степень с натуральным показателем (11 ч)

Степень с натуральным показателем и ее свойства. Одночлен. Функции $y = x^2$, $y = x^3$ и их графики.

Основная цель — выработать умение выполнять действия над степенями с натуральными показателями.

В данной теме дается определение степени с натуральным показателем. В курсе математики 6 класса учащиеся уже встречались с примерами возведения чисел в степень. В связи с вычислением значений степени в 7 классе дается представление о нахождении значений степени с помощью калькулятора. Рассматриваются свойства степени с натуральным показателем. На примере доказательства свойств $a^m \cdot a^n = a^{m+n}$, $a^m : a^n = a^{m-n}$ где m > n, $(a^m)^n = a^{mn}$, $(ab)^n = a^n b^n$ учащиеся впервые знакомятся с доказательствами, проводимыми на алгебраическом материале. Указанные свойства степени с натуральным показателем находят применение при умножении одночленов и возведении одночленов в степень. При нахождении значений выражений, содержащих степени, особое внимание следует обратить на порядок действий.

Рассмотрение функций $y=x^2$, $y=x^3$ позволяет продолжить работу по формированию умений строить и читать графики функций. Важно обратить внимание учащихся на особенности графика функции $y=x^2$: график проходит через начало координат, ось Оу является его осью симметрии, график расположен в верхней полуплоскости.

Умение строить графики функций $y = x^2$ и $y = x^3$ используется для ознакомления учащихся с графическим способом решения уравнений.

4. Многочлены .Формулы сокращённого умножения (17 ч)

Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочлена на множители. Формулы сокращенного умножения. Применение формул сокращённого умножения к разложению на множители.

Основная цель — выработать умение выполнять сложение, вычитание, умножение многочленов и разложение многочленов на множители.

Данная тема играет фундаментальную роль в формировании умения выполнять тождественные преобразования алгебраических выражений. Формируемые здесь формально-оперативные умения являются опорными при изучении действий с рациональными дробями, корнями, степенями с рациональными показателями.

Изучение темы начинается с введения понятий многочлена, стандартного вида многочлена, степени многочлена. Основное место в этой теме занимают алгоритмы действий с многочленами - сложение, вычитание и умножение. Учащиеся должны понимать, что сумму, разность, произведение многочленов всегда можно представить в виде многочлена. Действия сложения, вычитания и умножения многочленов выступают как составной компонент в заданиях на преобразования целых выражений. Поэтому нецелесообразно переходить к комбинированным заданиям прежде, чем усвоены основные алгоритмы.

Серьезное внимание в этой теме уделяется разложению многочленов на множители с помощью вынесения за скобки общего множителя и с помощью группировки. Соответствующие преобразования находят широкое применение как в курсе 7 класса, так и в последующих курсах, особенно в действиях с рациональными дробями.

В данной теме учащиеся встречаются с примерами использования рассматриваемых преобразований при решении разнообразных задач, в частности при решении уравнений. Это позволяет в ходе изучения темы продолжить работу по формированию умения решать уравнения, а

также решать задачи методом составления уравнений. В число упражнений включаются несложные задания на доказательство тождества.

5. Формулы сокращенного умножения (19 ч)

Формулы $(a \pm b)^2 = a^2 \pm 2ab + b^2$, $(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$, $(a \pm b)(a^2 \pm ab + b^2) = a^3 \pm b^3$. Применение формул сокращенного умножения в преобразованиях выражений.

Основная цель — выработать умение применять формулы сокращенного умножения в преобразованиях целых выражений в многочлены и в разложении многочленов на множители.

В данной теме продолжается работа по формированию у учащихся умения выполнять тождественные преобразования целых выражений. Основное внимание в теме уделяется формулам (a - b) $(a + b) = a^2 - b^2$, $(a \pm b)^2 = a^2 + \pm 2ab + b^2$. Учащиеся должны знать эти формулы и соответствующие словесные формулировки, уметь применять их как «слева направо», так и «справа налево».

Наряду с указанными рассматриваются также формулы $(a \pm b)^3 = a^3 \pm 3a^{2b} + 3ab^2 \pm b^3$, $a^3 \pm b^3 = (a + b)$ $(a^2 \pm ab + b^2)$. Однако они находят меньшее применение в курсе, поэтому не следует излишне увлекаться выполнением упражнений на их использование.

В заключительной части темы рассматривается применение различных приемов разложения многочленов на множители, а также использование преобразований целых выражений для решения широкого круга задач.

6. Системы линейных уравнений (16 ч)

Система уравнений с двумя переменными. Решение систем двух линейных уравнений с двумя переменными. Решение задач методом составления систем уравнений.

Основная цель - ознакомить учащихся со способом решения систем линейных уравнений с двумя переменными, выработать умение решать системы уравнений и применять их при решении текстовых задач.

Изучение систем уравнений распределяется между курсами 7 и 9 классов. В 7 классе вводится понятие системы и рассматриваются системы линейных уравнений.

Изложение начинается с введения понятия «линейное уравнение с двумя переменными». В систему упражнений включаются несложные задания на решение линейных уравнений с двумя переменными в целых числах.

Формируется умение строить график уравнения a + by = c, где $a \ne 0$ или $b \ne 0$, при различных значениях a, b, c. Введение графических образов дает возможность наглядно исследовать вопрос о числе решений системы двух линейных уравнений c двумя переменными.

Основное место в данной теме занимает изучение алгоритмов решения систем двух линейных уравнений с двумя переменными способом подстановки и способом сложения. Введение систем позволяет значительно расширить круг текстовых задач, решаемых с помощью аппарата алгебры. Применение систем упрощает процесс перевода данных задачи с обычного языка на язык уравнений.

7. Повторение. Решение задач (6 ч)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 7 класса).

8 класс

1. Рациональные дроби (23ч)

Рациональная дробь. Основное свойство дроби, сокращение дробей. Сложение, вычитание, умножение и деление дробей. Преобразование рациональных выражений. Функция y = k/x и её график.

Цель – выработать умение выполнять тождественные преобразования рациональных выражений. **Знать** основное свойство дроби, рациональные, целые, дробные выражения; правильно употреблять термины «выражение», «тождественное преобразование», понимать формулировку заданий: упростить выражение, разложить на множители, привести к общему знаменателю, сократить дробь. Знать и понимать формулировку заданий: упростить выражение, разложить на множители, привести к общему знаменателю, сократить дробь, свойства обратной пропорциональности.

Уметь осуществлять в рациональных выражениях числовые подстановки и выполнять соответствующие вычисления, выполнять действия сложения и вычитания с алгебраическими дробями, сокращать дробь, выполнять разложение многочлена на множители применением формул

сокращенного умножения, выполнять преобразование рациональных выражений. *Уметь* осуществлять в рациональных выражениях числовые подстановки и выполнять соответствующие вычисления, выполнять действия умножения и деления с алгебраическими дробями, возводить дробь в степень, выполнять преобразование рациональных выражений; правильно употреблять функциональную терминологию (значение функции, аргумент, график функции), строить график обратной пропорциональности, находить значения функции у=k/х по графику, по формуле.

2. Квадратные корни (19 ч)

Понятие об иррациональном числе. Общие сведения о действительных числах. Квадратный корень, приближённое значение квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция y = x и её график.

Цель — систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие числа; выработать умение выполнять простейшие преобразования выражений, содержащих квадратные корни.

Знать определения квадратного корня, арифметического квадратного корня, какие числа называются рациональными, иррациональными, как обозначается множество рациональных чисел; свойства арифметического квадратного корня.

Уметь выполнять преобразование числовых выражений, содержащих квадратные корни; решать уравнения вида x2=a; находить приближенные значения квадратного корня; находить квадратный корень из произведения, дроби, степени, строить график функции $y = \sqrt{x}$ и находить значения этой функции по графику или по формуле; выносить множитель из-под знака корня, вносить множитель под знак корня; выполнять преобразование выражений, содержащих квадратные корни.

3. Квадратные уравнения (21 ч)

Квадратное уравнение. Формулы корней квадратного уравнения. Теорема Виета. Решение рациональных уравнений. Решение задач, приводящих к квадратным и рациональным уравнениям.

Цель – выработать умения решать квадратные уравнения, простейшие рациональные уравнения и применять из к решению задач.

Знать, что такое квадратное уравнение, неполное квадратное уравнение, приведенное квадратное уравнение; формулы дискриминанта и корней квадратного уравнения, терему Виета и обратную ей.

Уметь решать квадратные уравнения выделением квадрата двучлена, решать квадратные уравнения по формуле, решать неполные квадратные уравнения, решать квадратные уравнения с помощью теоремы, обратной теореме Виета, использовать теорему Виета для нахождения коэффициентов и свободного члена квадратного уравнения; решать текстовые задачи с помощью квадратных уравнений.

Знать какие уравнения называются дробно-рациональными, какие бывают способы решения уравнений, понимать, что уравнение — это математический аппарат решения разнообразных задач математики, смежных областей знаний, практики.

Уметь решать дробно-рациональные уравнения, решать уравнения графическим способом, решать текстовые задачи с помощью дробно-рациональных уравнений.

4. Неравенства (20 ч)

Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Применение свойств неравенств к оценке значения выражения. Линейное неравенство с одной переменной. Система линейных неравенств с одной переменной.

Цель – выработать умения решать линейные неравенства с одной переменной и их системы.

Знать определение числового неравенства с одной переменной, что называется решением неравенства с одной переменной, что значит решить неравенство, свойства числовых неравенств, понимать формулировку задачи «решить неравенство».

Уметь записывать и читать числовые промежутки, изображать их на числовой прямой, решать линейные неравенства с одной переменной, решать системы неравенств с одной переменной.

Уметь применять свойства неравенства при решении неравенств и их систем.

5. Степень с целым показателем. Элементы статистики и теории вероятностей (11 ч)

Степень с целым показателем и её свойства. Стандартный вид числа. Запись

приближенных значений. Действия над приближенными значениями. Сбор и группировка статистических данных. Наглядное представление статистической информации.

Цель – сформировать умение выполнять действия над степенями с целыми

показателями, ввести понятие стандартного вида числа, сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации.

Знать определение степени с целым и целым отрицательным показателем; свойства степени с целым показателями.

Уметь выполнять действия со степенями с натуральным и целым показателями; записывать числа в стандартном виде, записывать приближенные значения чисел, выполнять действия над приближенными значениями.

7. Повторение. Решение задач (8 ч)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 8 класса).

9 класс

1. Квадратичная функция (22 ч)

Функция. Возрастание и убывание функции. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Решение задач путем выделения квадрата двучлена из квадратного трехчлена. Функция $y=ax^2+bx+c$, её свойства, график. Простейшие преобразования графиков функций. Решение неравенств второй степени с одной переменной.

Цель – выработать умение строить график квадратичной функции и применять графические представления для решения неравенств второй степени с одной переменной.

Знать основные свойства функций, уметь находить промежутки знакопостоянства, возрастания, убывания функций.

Уметь находить область определения и область значений функции, читать график функции. Уметь решать квадратные уравнения, определять знаки корней. Уметь выполнять разложение квадратного трехчлена на множители. Уметь строить график функции $y=ax^2$, выполнять простейшие преобразования графиков функций. Уметь строить график квадратичной функции, выполнять простейшие преобразования графиков функций. Уметь строить график квадратичной функции» находить по графику нули функции, промежутки, где функция принимает положительные и отрицательные значения. Уметь построить график функции $y=ax^2$ и применять её свойства. Уметь построить график функции $y=ax^2$ и применять её свойства. Уметь построить график функции $y=ax^2$ и применять её свойства. Уметь находить токи пересечения графика Квадратичной функции с осями координат.

Уметь разложить квадратный трёхчлен на множители. Уметь решать квадратное уравнение. Уметь решать квадратное неравенство алгебраическим способом. Уметь решать квадратное неравенство с помощью графика квадратичной функции. Уметь решать квадратное неравенство методом интервалов. Уметь находить множество значений квадратичной функции. Функция $y=x^n$, Определение корня n-й степени.

2. Уравнения и неравенства с одной переменной (14 ч)

Целое уравнение и его корни. Дробные рациональные уравнения. Решение уравнений третьей и четвертой степени с одним неизвестным с помощью разложения на множители и введения вспомогательной переменной. Неравенства второй степени с одной переменной. Метод интервалов.

Цель - систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной, сформировать умение решать неравенства вида $ax^2+bx+c>0$ или $ax^2+bx+c<0$, где а не равно 0.

3. Уравнения и неравенства с двумя переменными (17 ч)

Уравнение с двумя переменными и его график. Уравнение окружности. Решение систем, содержащих одно уравнение первой, а другое второй степени. Решение задач методомсоставления систем. Решение систем двух уравнений второй степени с двумя переменными.

Цель – выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными, и решать текстовые задачи с помощью составления таких систем.

Знать методы решения уравнений:

- а) разложение на множители;
- б) введение новой переменной;
- в)графический способ.

Уметь решать целые уравнения методом введения новой переменной. Уметь решать системы 2 уравнений с 2 переменными графическим способом. Уметь решать уравнения с 2 переменными

способом подстановки и сложения. Уметь решать задачи «на работу», «на движение» и другие составлением истем уравнений.

3. Арифметическая и геометрическая прогрессии (15 ч)

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы n первых членов прогрессии.

Цель – дать понятие об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

Добиться понимания терминов «член последовательности», «номер члена последовательности», «формула п –го члена арифметической прогрессии»

Знать формулу n –го члена арифметической прогрессии, свойства членов арифметической прогрессии, способы задания арифметической прогрессии

Уметь применять формулу суммы n –первых членов арифметической прогрессии при решении задач Знать, какая последовательность является геометрической, уметь выявлять, является ли последовательность геометрической, если да, то находить q

Уметь вычислять любой член геометрической прогрессии по формуле, знать свойства членов геометрической прогрессии. Уметь применять формулу при решении стандартных задач. Уметь находить разность арифметической прогрессии. Уметь находить сумму п первых членов арифметической прогрессии. Уметь находить любой член геометрической прогрессии. Уметь находить сумму п первых членов геометрической прогрессии. Уметь решать задачи.

5. Элементы статистики и теории вероятностей (13 ч)

Комбинаторные задачи. Перестановки, размещения, сочетания. Перестановки. Размещения. Сочетания Вероятность случайного события.

Знать формулы числа перестановок, размещений, сочетаний и уметь пользоваться ими.

Уметь пользоваться формулой комбинаторики при вычислении вероятностей

7. Повторение. Решение задач (21 ч)

Закрепление знаний, умений и навыков, полученных на уроках по данным темам (курс алгебры 9 класса).

Планируемые результаты изучения курса алгебры в 7 – 9 классах

Рациональные числа

Выпускник научится:

- 1) понимать особенности десятичной системы счисления;
- 2) владеть понятиями, связанными с делимостью натуральных чисел;
- 3) выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
 - 4) сравнивать и упорядочивать рациональные числа;
- 5) выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
- 6) использовать понятия и умения, связанные с пропорциональностью величин, процентами в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчеты.

Выпускник получит возможность научиться:

- 7) познакомиться с позиционными системами счисления с основаниями, отличными от 10;
- 8) углубить и развить представления о натуральных числах и свойствах делимости;
- 9) научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Выпускник научится

- 1) использовать начальные представления о множестве действительных чисел;
- 2) владеть понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность научиться:

3) развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в человеческой практике;

4) развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения, приближения, оценки

Выпускник научится:

1) использовать в ходе решения задач элементарные представления, связанные с приближенными значениями величин.

Выпускник получит возможность научиться:

- 2)понять, что числовые данные, которые используются для характеристики объектов окружающего мира являются преимущественно приближенными, что по записи приближенных значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
- 3) понять, что погрешность результата вычислений должна быть соизмерима с погрешностью с погрешностью исходных данных.

Алгебраические выражения

Выпускник научится:

- 1) владеть понятиями «тождество», «тождественное преобразование», решать задачи содержащие буквенные данные; работать с формулами;
- 2) выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
- 3) выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
 - 4) выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

- 5) научиться выполнять многошаговые преобразования целых выражений, применяя широкий набор способов и приёмов;
- 6) применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего / наименьшего значения выражения).

Уравнения

Выпускник научится:

- 1) решать основные виды линейных уравнений с одной переменной, системы двух уравнений с двумя переменными;
- 2) понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
- 3) применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность научиться:

- 4) овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
- 5) применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

- 1) понимать и применять терминологию и символику. Связанные с отношением неравенства, свойства числовых неравенств;
- 2) решать линейные неравенства с одной пременной и их системы; решать квадратные неравенства с опорой на графические представления;
- 3) применять аппарат неравенств для решения задач из различных разделов курса. Выпускник получит возможность научиться:

- 4) разнообразным приемам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;
- 5) применять графические представления для исследования неравенств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции.

Выпускник научится:

- 1) понимать и использовать функциональные понятия и язык (термины, символические обозначения);
- 2) строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
- 3) понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

- 4) проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с выколотыми точками и т.п.);
- 5) использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

- 1) понимать и использовать язык последовательностей (термины, символические обозначения);
- 2) применять формулы, связанные с арифметической и геометрической прогрессий, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться

- 3) решать комбинированные задачи с применением формул n –го члена и суммы первых n членов арифметической и геометрической прогрессий, применяя при этом аппарат уравнений и неравенств;
- 4) понимать арифметическую и геометрическую прогрессии как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую с экспоненциальным ростом.

Описательная статистика

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе, с помощью компьютерного моделирования, интерпретации их результатов.

Комбинаторика.

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Выпускник получит возможность научиться некоторым специальным приемам решения комбинаторных задач.

Формы промежуточной и итоговой аттестации.

Промежуточная аттестация проводится в форме тестов, математических диктантов, проверочных и самостоятельных работ (текущий, тематический контроль). Выявление итоговых результатов изучения темы завершается контрольной работой(итоговый контроль). Контрольные работы составляются с учетом обязательных результатов обучения.

Текущий контроль можно осуществлять как в письменной, так и в устной форме. Письменные работы для текущего контроля рекомендуется проводить в форме самостоятельной работы, теста или математического диктанта. Желательно, чтобы работы для текущего контроля состояли из нескольких однотипных заданий, с помощью которых осуществляется всесторонняя проверка только одного определенного умения (например, умения сравнивать числа, умения находить значение функции и др.).

Тематический контроль проводится в основном в письменной форме. Для тематических проверок выбираются узловые вопросы программы; приемы вычислений, действия с числами, измерение величин и др.

Для обеспечения самостоятельности учащихся подбираются несколько вариантов работы. На выполнение такой работы отводится 15-20 минут урока.

Итоговый контроль проводится в форме контрольных работ комбинированного характера. В этих работах сначала отдельно оценивается выполнение задач, примеров, а затем выводится итоговая отметка за всю работу. При этом итоговая отметка не выставляется как средний балл, а определяется с учетом тех видов заданий, которые для данной работы являются основными.

В основе оценивания письменных работ лежат следующие показатели: правильность выполнения и объем выполненного задания.